Group Theory Problem 1

There is a canonical surjection QQ/Z\mathbb Q \rightarrow \mathbb Q/\mathbb Z given by qq+Zq\mapsto q+\mathbb Z, i.e. QQ/Z|\mathbb Q|\geq |\mathbb Q/\mathbb Z|. The sets r+QR/Qr+\mathbb Q\in\mathbb R /\mathbb Q for rRr\in\mathbb R are countable. Additionally, we know that rRr+Q=R\bigcup_{r\in\mathbb R} r+\mathbb Q = \mathbb R. Because R\mathbb R is not countable, the set R/Q\mathbb R/\mathbb Q must be uncountably infinite. Otherwise, the countable union of countable sets would be countable. Thus, R/Q=R|\mathbb R/\mathbb Q| = |\mathbb R|. In summary: R/Q=R>QQ/Z. |\mathbb R/\mathbb Q| = |\mathbb R| > |\mathbb Q| \geq |\mathbb Q/\mathbb Z|. This means that there does not exists a bijective function between the two groups.