Combinatorics Problem 1

We consider the species T\mathcal T of such trees. An object in T\mathcal T is either a single node \bullet or a single node followed by two or three trees. Hence the combinatorial construction is T={} ˙ ({}×T×T) ˙ ({}×T×T×T), \mathcal T = \{\bullet \}\text{ } \dot{\cup}\text{ } (\{\bullet \} \times \mathcal T \times \mathcal T)\text{ } \dot{\cup}\text{ } (\{\bullet \} \times \mathcal T \times \mathcal T \times \mathcal T),

which translates into the equation T(z)=z+zT2(z)+zT3(z)T(z) = z+zT^2(z)+zT^3(z) for the generating function T(z)C[ ⁣[z] ⁣]T(z)\in \mathbb C[\![z]\!], which is equivalent to z=T(z)1+T2(z)+T3(z)z = \frac{T(z)}{1+T^2(z)+T^3(z)}. Thus, the compositional inverse of T(z)T(z) is z1+z2+z3\frac{z}{1+z^2+z^3}. By Lagrange's inversion formula one gets for the nn-th coefficient of T(z)T(z): 1n[ ⁣[z1] ⁣](z1+z2+z3)n=1n[ ⁣[z1] ⁣]1zn(1+z2+z3)n=1n[ ⁣[z1] ⁣]1znk=0n(nk)(z2+z3)k=1n[ ⁣[z1] ⁣]k=0n(nk)z2kn(1+z)k \frac 1n [\![z^{-1}]\!]\left ( \frac{z}{1+z^2+z^3} \right )^{-n} = \frac 1n [\![z^{-1}]\!] \frac 1{z^n} ( 1+ z^2 + z^3 )^n = \frac 1n [\![z^{-1}]\!] \frac 1{z^n} \sum_{k=0}^n \binom{n}{k} (z^2+z^3)^k = \frac 1n [\![z^{-1}]\!] \sum_{k=0}^n \binom{n}{k} z^{2k-n} (1+z)^k =1n[ ⁣[z1] ⁣]k=0nl=0k(nk)(kl)z2kn+l=1nk=0n(nk)(kn2k1)=1nk=0n(nk)(k3kn+1) = \frac 1n [\![z^{-1}]\!] \sum_{k=0} ^n \sum_{l=0}^k \binom{n}{k} \binom{k}{l} z^{2k-n+l} = \frac 1n \sum_{k=0}^n \binom{n}{k}\binom{k}{n-2k-1} = \frac 1n \sum_{k=0}^n \binom{n}{k}\binom{k}{3k-n+1}

The result is the formula we wanted to find.